Section 2.4

Complex numbers

If a and b are real numbers, the number a + bi is a complex number, and it is said to be written in standard form. If b = 0, the number a + bi = a is a real number. If $b \neq 0$, the number a + bi is called an imaginary number. A number of the form bi, where $b \neq 0$, is called a pure imaginary number.

Equality of Complex Numbers

Two complex numbers a + bi and c + di, written in standard form, are equal to each other a + bi = c + di if and only if a = c and b = d.

Principal Square Root of a Negative Number

If *a* is a positive number, the principal square root of the negative number -a is defined as $\sqrt{-a} = \sqrt{a}i$.

Complex Conjugates

The numbers of the form a + bi and a - bi are called complex conjugates.

Problem 1. Write the complex number in the standard form a + bi.

- a) $\sqrt{-9}$
- b) $2 + \sqrt{-12}$
- c) $5 + \sqrt{-4}$
- d) i, i^2, i^3, i^4, i^5
- e) $-6i^2 + 3i$

Problem 2. Perform the operation and write the result in the standard form.

- a) (-2+6i) + (13-7i)
- b) (4-8i) (6+9i)
- c) $(-3 + \sqrt{-24}) (4 + \sqrt{2}i)$
- d) (3-4i)(2+5i)
- e) $(1-3i)^2 (1+3i)^2$

Problem 3. Write the quotient in standard form.

a)
$$\frac{-22}{2i}$$

b)
$$\frac{-3+2i}{4-i}$$

c)
$$\frac{3i}{(2-3i)^2}$$

Problem 4. Perform the operation and write the result in standard form.

a)
$$\frac{2i}{3+i} + \frac{4}{3-i}$$

- b) $\sqrt{-6} \cdot \sqrt{-8}$
- c) $(\sqrt{-2})^7$

Problem 5. Solve the quadratic equation.

- a) $x^2 + 4x + 8 = 0$
- b) $4x^2 4x + 37 = 0$

c)
$$x^2 + x + 1 = 0$$

Homework: Read section 2.4, do #9, 13, 19, 27, 33, 41, 45, 55, 63, 69, 75, 87 (the quiz for this section will be taken from these problems)