Section 2.4

Complex numbers

If a and b are real numbers, the number $a+b i$ is a complex number, and it is said to be written in standard form. If $b=0$, the number $a+b i=a$ is a real number. If $b \neq 0$, the number $a+b i$ is called an imaginary number. A number of the form $b i$, where $b \neq 0$, is called a pure imaginary number.

Equality of Complex Numbers

Two complex numbers $a+b i$ and $c+d i$, written in standard form, are equal to each other $a+b i=c+d i$ if and only if $a=c$ and $b=d$.

Principal Square Root of a Negative Number

If a is a positive number, the principal square root of the negative number $-a$ is defined as $\sqrt{-a}=\sqrt{a} i$.

Complex Conjugates

The numbers of the form $a+b i$ and $a-b i$ are called complex conjugates.
Problem 1. Write the complex number in the standard form $a+b i$.
a) $\sqrt{-9}$
b) $2+\sqrt{-12}$
c) $5+\sqrt{-4}$
d) $i, i^{2}, i^{3}, i^{4}, i^{5}$
e) $-6 i^{2}+3 i$

Problem 2. Perform the operation and write the result in the standard form.
a) $(-2+6 i)+(13-7 i)$
b) $(4-8 i)-(6+9 i)$
c) $(-3+\sqrt{-24})-(4+\sqrt{2} i)$
d) $(3-4 i)(2+5 i)$
e) $(1-3 i)^{2}-(1+3 i)^{2}$

Problem 3. Write the quotient in standard form.
a) $\frac{-22}{2 i}$
b) $\frac{-3+2 i}{4-i}$
c) $\frac{3 i}{(2-3 i)^{2}}$

Problem 4. Perform the operation and write the result in standard form.
a) $\frac{2 i}{3+i}+\frac{4}{3-i}$
b) $\sqrt{-6} \cdot \sqrt{-8}$
c) $(\sqrt{-2})^{7}$

Problem 5. Solve the quadratic equation.
a) $x^{2}+4 x+8=0$
b) $4 x^{2}-4 x+37=0$
c) $x^{2}+x+1=0$

Homework: Read section 2.4 , do \#9, 13, 19, 27, 33, 41, 45, 55, 63, 69, 75,87 (the quiz for this section will be taken from these problems)

